问题 选择题
双曲线x2-y2=8的左右焦点分别为F1,F2,点Pn(xn,yn)(n=1,2,3…)在其右支上,且满足|Pn+1F2|=|PnF1|,P1F2⊥F1F2,则x2012的值是(  )
A.8040
2
B.80484
2
C.8048D.8040
答案

∵a2=8,b2=8,

∴c=4,即x1=4,又|Pn+1F2|=|PnF1|,

(xn+1-4)2+yn+12=(xn+4)2+yn2

xn+12-8xn+1+16+yn+12=xn2+8xn+16+yn2

∴(xn+1+xn)(xn+1-xn-4)=0,

由题意知,xn>0,

∴xn+1-xn=4,

∴{xn}是以4为首项,4为公差的等差数列,

∴x2012=x1+2011×4=4+8044=8048.

故选C.

选择题
单项选择题