问题
解答题
设数列{an}为单调递增的等差数列,a1=1,且a3,a6,a12依次成等比数列. (Ⅰ)求数列{an}的通项公式an; (Ⅱ)若bn=an•2an,求数列{bn}的前n项和Sn; (Ⅲ)若cn=
|
答案
(Ⅰ)∵数列{an}为单调递增的等差数列,a1=1,且a3,a6,a12依次成等比数列,
∴
=a12 a6
=a6 a3
=a12-a6 a6-a3
=2,6d 3d
∴1+5d=2(1+2d),
解得d=1,
∴an=n.….(4分)
(Ⅱ)∵an=n,∴bn=an•2an=n•2n
∴数列{bn}的前n项和Sn=1×2+2×22+3×23+…+n×2n,①
∴2Sn=1×22+2×23+3×24+…+n×2n+1,②
①-②,得-Sn=2+22+23+24+…+2n-n×2n+1
=
-n×2n+12×(1-2n) 1-2
=-(2-2n+1+n×2n+1),
∴Sn=2-2n+1+n×2n+1=(n-1)•2n+1+2.….(13分)
(Ⅲ)∵an=n,
∴cn=2an (2an)2+3•2an+2
=2n (2n)2+3×2n+2
=2n (2n+1)(2n+2)
=2n-1 (2n+1)(2n-1+1)
=
-1 2n-1+1
,1 2n+1
∴数列{cn}的前n项和
Tn=(
-1 20+1
)+(1 21+1
-1 21+1
)+…+(1 22+1
-1 2n-1+1
)=1 2n+1
-1 2
.…(13分)1 2n+1