问题 填空题
设双曲线x2-y2=1的两条渐近线与直线x=
2
2
围成的三角形区域(包含边界)为D,点P(x,y)为D内的一个动点,则目标函数z=x-2y的最小值为______.
答案

双曲线x2-y2=1的两条渐近线是y=±x,解方程组

y=x
x=
2
2
y=-x
x=
2
2
,,
y=x
y=-x
得到三角形区域的顶点坐标是A(
2
2
2
2
)
,B(
2
2
,-
2
2
)
,C(0,0).∴zA=
2
2
-2×
2
2
=-
2
2
zB=
2
2
-2× (-
2
2
)=
3
2
2
,zC=0.

∴目标函数z=x-2y的最小值为-

2
2

答案:-

2
2

选择题
单项选择题