问题
证明题
证明以下命题:
(Ⅰ)对任一正整数a,都存在正整数b,c(b<c),使得a2,b2,c2成等差数列;
(Ⅱ)存在无穷多个互不相似的三角形△n,其边长an,bn,cn为正整数且an2,bn2,cn2 成等差数列。
答案
证明:(Ⅰ)易知12,52,72成等差数列,则a2,(5a)2,(7a)2也成等差数列,
所以对任一正整数a,都存在正整数b=5a,c=7a(b<c),使得a2,b2,c2成等差数列.
(Ⅱ)若an2,bn2,cn2 成等差数列,则有bn2-an2=cn2-bn2,
即(bn-an)(bn+an)=(cn-bn)(cn+bn), ①
选取关于n的一个多项式,例如4n(n2-1),使得它可按两种方式分解因式,
由于4n(n2-1)=(2n-2)(2n2+2n)=(2n+2)(2n2-2n),
因此令,
可得,
易验证an,bn,cn满足①,因此an2,bn2,cn2 成等差数列,
当n≥4时,有an<bn<cn且an+bn-cn=n2-4n+1>0,
因此以an,bn,cn为边长可以构成三角形,将此三角形记为△n(n≥4).
其次,任取正整数m,n(m,n≥4,且m≠n),假若三角形△m与△n相似,
则有,
据比例性质有,
,
所以,由此可得m=n,与假设m≠n矛盾,
即任两个三角形△m与△n(m,n≥4,m≠n)互不相似;
所以存在无穷多个互不相似的三角形△n,其边长an,bn,cn为正整数且an2,bn2,cn2 成等差数列。