问题 选择题
在一次函数y=-x+3的图象上取一点P,作PA⊥x轴,垂足为A,作PB⊥y轴,垂足为B,且矩形OAPB的面积为
9
4
,则这样的点P共有(  )
A.4个B.3个C.2个D.1个
答案

设P点的坐标为(a,b )则矩形OAPB的面积=|a|•|b|即|a|•|b|=

9
4

∵P点在直线y=-x+3上

∴-a+3=b

∴|a|•|3-a|=

9
4

(1)若a>3,则|a|•|3-a|=a•(a-3)=

9
4
,解得:a=
3+3
2
2
,a=
3-3
2
2
(舍去)

(2)若3>a>0,则|a|•|3-a|=a•(3-a)=

9
4
,解得:a=
3
2

(3)若a<0,则|a|•|3-a|=-a•(3-a)=

9
4
,解得:a=
3+3
2
2
(舍去),a=
3-3
2
2

∴这样的点P共有3个.

故选B.

单项选择题 A2型题
问答题 简答题