问题 选择题
已知点F1、F2分别是双曲线C:
x2
a2
-
y2
b2
=1
的两个焦点,过F1且垂直于x轴的直线与双曲线C交于A、B两点,若△ABF2为等边三角形,则该双曲线的离心率e=(  )
A.2B.2
3
C.
2
3
D.
3
答案

设F1(-c,0),F2(c,0),则

将F1(-c,0)代入双曲线C:

x2
a2
-
y2
b2
=1,可得
c2
a2
-
y2
b2
=1

∴y=±

b2
a

∵过F1且垂直于x轴的直线与双曲线C交于A、B两点,

|AB|=

2b2
a

∵△ABF2为等边三角形,|F1F2|=2c,

2c=

3
2
×
2b2
a

2ac=

3
(c2-a2)

3
e2-2e-1=0

e=-

3
3
3

∵e>1,∴e=

3

故选D.

单项选择题 案例分析题
单项选择题