问题
填空题
已知双曲线
|
答案
由a=3,b=4,a2+b2=c2得,c=5,所以|PF2|=|F1F2|=5×2=10,
再由双曲线定义得:|PF1|-|PF2|=2a=6,所以|PF1|=16,
所以△PF1F2是等腰三角形,
过顶点F2作底边PF1的高,可得高为6,所以△PF1F2的面积是
×6×16=48.1 2
故答案为:48
已知双曲线
|
由a=3,b=4,a2+b2=c2得,c=5,所以|PF2|=|F1F2|=5×2=10,
再由双曲线定义得:|PF1|-|PF2|=2a=6,所以|PF1|=16,
所以△PF1F2是等腰三角形,
过顶点F2作底边PF1的高,可得高为6,所以△PF1F2的面积是
×6×16=48.1 2
故答案为:48