问题
解答题
已知数列{an}的前n项为和Sn,点(n,
(Ⅰ)求数列{an}、{bn}的通项公式; (Ⅱ)设cn=
|
答案
(Ⅰ)由题意,得
=Sn n
n+1 2
,即Sn=11 2
n2+1 2
n.11 2
故当n≥2时,an=Sn-Sn-1=(
n2+1 2
n)-[11 2
(n-1)2+1 2
(n-1)]=n+5.11 2
注意到n=1时,a1=S1=6,而当n=1,n+5=6,
所以,an=n+5(n∈N*).
又bn+2-2bn+1+bn=0,即bn+2-bn+1=bn+1-bn(n∈N*),
所以{bn}为等差数列,于是
=153.9(b3+b7) 2
而b3=11,故b7=23,d=
=3,23-11 7-3
因此,bn=b3+3(n-3)=3n+2,即bn=3n+2(n∈N*).
(Ⅱ)cn=
=3 (2an-11)(2bn-1) 3 [2(n+5)-11][2(3n+2)-1]
=
=1 (2n-1)(2n+1)
(1 2
-1 2n-1
).1 2n+1
所以,Tn=c1+c2+…+cn=
[(1-1 2
)+(1 3
-1 3
)+(1 5
-1 5
)++(1 7
-1 2n-1
)]1 2n+1
=
(1-1 2
)=1 2n+1
.n 2n+1
由于Tn+1-Tn=
-n+1 2n+3
=n 2n+1
>0,1 (2n+3)(2n+1)
因此Tn单调递增,故(Tn)min=
.1 3
令
>1 3
,得k<19,所以Kmax=18.k 57