问题 解答题
已知函数f(x)=x2+bx+c(b,c∈R)为偶函数,如果点A(x,y)在函数f(x)的图象上,且点B(x,y2+1)在g(x)=f(x2+c)的图象上.
(1)求函数f(x)的解析式;
(2)设F(x)=g(x)-λf(x).是否存在实数λ,使F(x)在(-∞,-
2
2
)
上为减函数,且在[-
2
2
,0)
上为增函数?若存在,求出λ的值;若不存在,请说明理由.
答案

(1)∵f(x)=x2+bx+c为偶函数,故f(-x)=f(x),即有(-x)2+b(-x)+c=x2+bx+c,解得b=0.

由因为点A(x,y)在函数f(x)的图象上,且点B(x,y2+1)在g(x)=f(x2+c)的图象上,所以c=1,所以f(x)=x2+1

(2)g(x)=f(x2+1)=(x2+1)2+1=x4+2x2+2.

F(x)=g(x)-λf(x)=x4+(2-λ)x2+(2-λ),F(x1)-F(x2)=(x1+x2)(x1-x2)[x12+x22+(2-λ)]

由题设当x1<x2-

2
2
时,(x1+x2)(x1-x2)>0,x12+x22+(2-λ)>
1
2
+
1
2
+2-λ=3-λ,

则3-λ≥0,λ≤3;

-

2
2
<x1<x2<0时,(x1+x2)(x1-x2)>0,x12+x22+(2-λ)>
1
2
+
1
2
+2-λ=3-λ,

则3-λ≥0,λ≥3故λ=3.

单项选择题 A1/A2型题
单项选择题 A3/A4型题