问题 选择题
F1、F2是双曲线
x2
4
-y2=-1
的两个焦点,点P在双曲线上,且∠F1PF2=60°,则△F1PF2的面积是(  )
A.2
3
B.4
3
C.8D.16
答案

由题意可得双曲线

x2
4
-y2=-1即-
x2
4
+y2=1
的a=1,b=2,c=
5

得F2(0,

5
),F1 (0,-
5
),

又F1F22=20,|PF1-PF2|=2,

由余弦定理可得:

F1F22=PF12+PF22-2PF1•PF2cos60°=(PF1-PF22+PF1•PF2=4+PF1•PF2

∴PF1•PF2=16

△F1PF2=

1
2
PF1•PF2sin60°=
1
2
×16×
3
2
=4
3

故选B.

单项选择题
单项选择题