问题
填空题
下列说法:①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,+a+4])是偶函数,则实数b=2;②f(x)=
|
答案
①∵f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函数,
则2a-1+a+4=0得a=-1,又∵f(-x)=f(x)可解得b=2;故①正确.
②将函数化简得:f(x)=0,x∈R,∴既是奇函数又是偶函数;故②正确.
③设x<0,由-x>0,又∵当x∈[0,+∞]时,f(x)=x(1+x)
∴f(-x)=-x(1-x),
又∵f(x)是定义在R上的奇函数
f(x)=-f(-x)=x(1-x)
∴当x∈R时,f(x)=x(1+|x|);故③正确.
④令x=y=0,得f(0)=0
再令x=1,y=-1,得f(-1)=f(-1)-f(1)
∴f(1)=0
再令x=y=-1,得f(1)=-f(1)-f(-1)
∴f(-1)=0
再令y=-1
得f(-x)=xf(-1)-f(x)
则,f(-x)=-f(x)
∴f(x)是奇函数.故④正确.
故答案为:①②③④