问题
解答题
化简求值: (1)已知|a+
(2)已知x+y=a,x2+y2=b,求4x2y2. (3)计算:(2+1)(22+1)(24+1)…(2128+1)+1. |
答案
(1)∵|a+
|+(b+3)2=0,1 2
∴a+
=0,b-3=0,1 2
∴a=-
,b=3,1 2
[(2a+b)2+(2a+b)(b-2a)-6b]÷2b,
=(4a2+b2+4ab+b2-4a2-6b)÷2b,
=b+2a-3,
把a=-
,b=3代入得:1 2
原式=b+2a-3=3+2×(-
)-3=-1;1 2
(2)∵(x+y)2=x2+y2+2xy,
∴a2=b+2xy,
∴xy=
,a2-b 2
∴4x2y2=(2xy)2=(a2-b)2=a4-2a2b+b2,
xy=
;(x+y)2-(x2+y2) 2
(3)(2-1)(2+1)(22+1)(24+1)(2128+1)+1=(2128)2-1+1=2256.