问题 解答题
已知奇函数f(x)=loga
bx+1
x-1
,(a>0,且a≠1)
(Ⅰ)求b的值;
(Ⅱ)对于x∈[2,4]f(x)>loga
m
(x-1)2(7-x)
恒成立,求m的取值范围;
(Ⅲ)当n≥4,且n∈N*时,试比较af(2)+f(3)+…+f(n)与2n-2的大小.
答案

(Ⅰ)由f(x)=loga

bx+1
x-1
f(-x)=loga
-bx+1
-x-1
=loga
bx-1
x+1
f(x)+f(-x)=loga
bx+1
x-1
+loga
bx-1
x+1
=loga
b2x2-1
x2-1
=0

b2x2-1
x2-1
=1恒成立,b2=1,b=±1经检验b=1

(Ⅱ)由x∈[2,4]时,f(x)=loga

x+1
x-1
>loga
m
(x-1)2(7-x)
恒成立,

①当a>1时

x+1
x-1
m
(x-1)2(7-x)
>0对x∈[2,4]恒成立

∴0<m<(x+1)(x-1)(7-x)在x∈[2,4]恒成立

设g(x)=(x+1)(x-1)(7-x),x∈[2,4]

则g(x)=-x3+7x2+x-7g′(x)=-3x2+14x+1=-3(x-

7
3
)2+
52
3

∴当x∈[2,4]时,g'(x)>0

∴y=g(x)在区间[2,4]上是增函数,g(x)min=g(2)=15

∴0<m<15

②当0<a<1时

由x∈[2,4]时,f(x)=loga

x+1
x-1
>loga
m
(x-1)2(7-x)
恒成立,

x+1
x-1
m
(x-1)2(7-x)
对x∈[2,4]恒成立

∴m>(x+1)(x-1)(7-x)在x∈[2,4]恒成立

设g(x)=(x+1)(x-1)(7-x),x∈[2,4]

由①可知y=g(x)在区间[2,4]上是增函数,g(x)max=g(4)=45

∴m>45

综上,当a>1时,0<m<15;

当0<a<1时,m>45

(Ⅲ)∵f(2)+f(3)++f(n)=loga3+loga

4
2
+loga
5
3
++loga
n
n-2
+loga
n+1
n-1
=loga(3×
4
2
×
5
3
××
n
n-2
×
n+1
n-1
)=loga
n(n+1)
2

af(2)+f(3)++f(n)=

n(n+1)
2

当n=2时,

n(n+1)
2
=3,2n-2=2,∴af(2)+f(3)++f(n)>2n-2

当n=3时,

n(n+1)
2
=6,2n-2=6,∴af(2)+f(3)++f(n)=2n-2

当n≥4时,af(2)+f(3)++f(n)=

n(n+1)
2
<2n-2

下面证明:当n≥4时,af(2)+f(3)++f(n)=

n(n+1)
2
<2n-2

当n≥4时,2n-2=Cn0+Cn1+Cn2++Cnn-1+Cnn-2=Cn1+Cn2++Cnn-1>n+

n(n-1)
2
+n=
n2+3n
2
n(n+1)
2

∴当n≥4时,af(2)+f(3)++f(n)=

n(n+1)
2
<2n-2

h(4)=

4×5
2
-24+2=-4<0n≥4时,
n(n+1)
2
-2n+2<0
,即
n(n+1)
2
2n-2

∴当n≥4时,af(2)+f(3)++f(n)=

n(n+1)
2
<2n-2.

填空题
单项选择题