问题
解答题
已知函数f(x)=ax2+bx+c(a≠0)满足:①f(0)=0;②∀x∈R,f(x)≥x;③f(-
(1)求f(x)的表达式; (2)试讨论函数g(x)=f(x)-2x在区间[-2,2]内的单调性; (3)是否存在实数t,使得函数h(x)=f(x)-x2-x+t与函数u(x)=|log2x|(x∈(0,2])的图象恒有两个不同交点,如果存在,求出相应t的取值范围;如果不存在,说明理由. |
答案
(1)由条件①得f(0)=c=0,
由③f(-
+x)=f(-1 2
-x)知f(x)的对称轴x=-1 2
=-b 2a
,即a=b,1 2
由②∀x∈R,f(x)≥x,即ax2+(a-1)x≥0,对∀x∈R恒成立,
∴
,a>0 △=(a-1)2≤0
又(a-1)2≥0,∴a=b=1,
∴f(x)=x2+x.
(2)g(x)=f(x)-2x=x2-x,其图象为开口向上的抛物线且对称轴为x=
,1 2
所以g(x)在区间[-2,
]上单调递减,在区间[1 2
,2]上单调递增;. 1 2
(3)存在实数t,使两函数图象恒有两个交点,理由如下:
h(x)=f(x)-x2-x+t=t,
又函数u(x)=|log2x|(x∈(0,2])在(0,1)上单调递减,在(1,2)上单调递增,又u(1)=0,u(2)=1,
∴h(x)与u(x)恒有两个不同交点得实数t的取值范围是(0,1].