问题 解答题
已知函数f(x)=mx-
m
x
,g(x)=2lnx

(Ⅰ)当m=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)当m=1时,判断方程f(x)=g(x)在区间(1,+∞)上有无实根.
(Ⅲ)若x∈(1,e]时,不等式f(x)-g(x)<2恒成立,求实数m的取值范围.
答案

(Ⅰ)m=2时,f(x)=2x-

2
x
f′(x)=2+
2
x2
,f′(1)=4
,切点坐标为(1,0),∴切线方程为y=4x-4;

(Ⅱ)m=1时,令h(x)=f(x)-g(x)=x-

1
x
-2lnx,h′(x)=1+
1
x2
-
2
x
=
(x-1)2
x2
≥0

∴h(x)在(0,+∞)上为增函数,

又h(1)=0,所以f(x)=g(x)在(1,+∞)内无实数根; 

(Ⅲ)不等式f(x)-g(x)<2恒成立,即mx-

m
x
-2lnx<2恒成立,也就是m(x2-1)<2x+2xlnx恒成立,

又x2-1>0,则当x∈(1,e]时,m<

2x+2xlnx
x2-1
恒成立,

G(x)=

2x+2xlnx
x2-1
,只需m小于G(x)的最小值,

G(x)=

(2+2lnx+2)(x2-1)-(2x+2xlnx)•2x
(x2-1)2
=
-2(x2lnx+lnx+2)
(x2+1)2

∵1<x≤e,∴lnx>0,∴当x∈(1,e]时G'(x)<0,∴G(x)在(1,e]上单调递减,

∴G(x)在(1,e]的最小值为G(e)=

4e
e2-1

则m的取值范围是(-∞,

4e
e2-1
).

填空题
单项选择题