问题
填空题
等差数列{ak}共有2n+1项(n∈N*),其中所有奇数项之和为310,所有偶数项之和为300,则n=______.
答案
∵奇数项和S1=
=310(a1+a2n+1) (n+1) 2
∴a1+a2n+1=620 n+1
∵数列前2n+1项和S2=
=300+310=610(a1+a2n+1)(2n+1) 2
∴
=S1 S2
=(a1+a2n+1) (n+1) 2 (a1+a2n+1)(2n+1) 2
=2n+1 n+1 310 610
∴n=30
故答案为:30