问题
选择题
已知定义域为(-1,1)的奇函数y=f(x)又是增函数,且f(a-2)+f(4-a2)>0,则a的取值范围是( )
|
答案
因为函数y=f(x)是奇函数,
所以f(a-2)+f(4-a2)>0可以转化为f(a-2)>f(a2-4).
又因为定义域为(-1,1)又是增函数,
所以有
解得:-1<a-2<1 -1<4-a2<1 a-2>a2-4
<a<2.3
故选:B.
已知定义域为(-1,1)的奇函数y=f(x)又是增函数,且f(a-2)+f(4-a2)>0,则a的取值范围是( )
|
因为函数y=f(x)是奇函数,
所以f(a-2)+f(4-a2)>0可以转化为f(a-2)>f(a2-4).
又因为定义域为(-1,1)又是增函数,
所以有
解得:-1<a-2<1 -1<4-a2<1 a-2>a2-4
<a<2.3
故选:B.