问题
选择题
定义在R上的奇函数f(x)满足f(x+2)=f(x)+1.则f(1)=( )
|
答案
由在R上的奇函数f(x),得到f(0)=0,再有f(x)满足f(x+2)=f(x)+1,得到:f(2)=f(0)+1=1,∴f(-2)=-f(2)=-1,∴f(-1+2)=f(-1)+1⇔f(1)=f(-1)+1,因为f(x)为奇函数,∴f(1)=f(-1)+1⇔f(1)=-f(1)+1⇒f(1)=
.1 2
故选D.