问题 解答题
设A(x1,y1)、B(x2,y2)是函数f(x)=
3
2
-
2
2x+
2
图象上任意两点,且x1+x2=1.
(Ⅰ)求y1+y2的值;
(Ⅱ)若Tn=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n
n
)
(其中n∈N*),求Tn
(Ⅲ)在(Ⅱ)的条件下,设an=
2
Tn
(n∈N*),若不等式an+an+1+an+2+…+a2n-1>loga(1-2a)对任意的正整数n恒成立,求实数a的取值范围.
答案

(Ⅰ)∵A(x1,y1)、B(x2,y2)是函数f(x)=

3
2
-
2
2x+
2
图象上任意两点,且x1+x2=1.

y1+y2=

3
2
-
2
2x1+
2
+
3
2
-
2
2x2+
2

=3-(

2
2x1+
2
+
2
2x2+
2
)=3-
4+
2
(2x1+2x2)
2x1+x2+
2
(2x1+2x2)+2
=3-
4+
2
(2x1+2x2)
2+
2
(2x1+2x2)+2
=2.(4分)

(Ⅱ)由(Ⅰ)可知,当x1+x2=1时,y1+y2=2,

Tn=f(0)+f(

1
n
)+f(
2
n
)+…+f(
n
n
)得,Tn=f(
n
n
)+…+f(
2
n
)+f(
1
n
)+f(0)

2Tn=[f(0)+f(

n
n
)]+[f(
1
n
)+f(
n-1
n
)]+…+[f(
n
n
)+f(0)]=2(n+1),

∴Tn=n+1.(8分)

(Ⅲ)由(Ⅱ)得,an=

2
Tn
=
2
n+1
,不等式an+an+1+an+2+…+a2n-1>loga(1-2a)即为
2
n+1
+
2
n+2
+…+
2
2n
>loga(1-2a)

设Hn=

2
n+1
+
2
n+2
+…+
2
2n

则 Hn+1=

2
n+2
+
2
n+3
+…+
2
2n
+
2
2n+1
+
2
2n+2

Hn+1-Hn=

2
2n+1
+
2
2(n+1)
-
2
n+1
=
2
2n+1
-
2
2n+2
>0,

∴数列{Hn}是单调递增数列,

∴(Hnmin=T1=1,(10分)

要使不等式恒成立,只需loga(1-2a)<1,

即loga(1-2a)<logaa,

0<a<1
1-2a>0
1-2a>a
a>1
1-2a>0
1-2a<a

解得0<a<

1
3

故使不等式对于任意正整数n恒成立的a的取值范围是(0,

1
3
).(12分)

单项选择题
单项选择题 案例分析题