设A(x1,y1)、B(x2,y2)是函数f(x)=
(Ⅰ)求y1+y2的值; (Ⅱ)若Tn=f(0)+f(
(Ⅲ)在(Ⅱ)的条件下,设an=
|
(Ⅰ)∵A(x1,y1)、B(x2,y2)是函数f(x)=
-3 2
图象上任意两点,且x1+x2=1.2 2x+ 2
y1+y2=
-3 2
+2 2x1+ 2
-3 2 2 2x2+ 2
=3-(
+2 2x1+ 2
)=3-2 2x2+ 2
=3-4+
(2x1+2x2)2 2x1+x2+
(2x1+2x2)+22
=2.(4分)4+
(2x1+2x2)2 2+
(2x1+2x2)+22
(Ⅱ)由(Ⅰ)可知,当x1+x2=1时,y1+y2=2,
由Tn=f(0)+f(
)+f(1 n
)+…+f(2 n
)得,Tn=f(n n
)+…+f(n n
)+f(2 n
)+f(0),1 n
∴2Tn=[f(0)+f(
)]+[f(n n
)+f(1 n
)]+…+[f(n-1 n
)+f(0)]=2(n+1),n n
∴Tn=n+1.(8分)
(Ⅲ)由(Ⅱ)得,an=
=2 Tn
,不等式an+an+1+an+2+…+a2n-1>loga(1-2a)即为2 n+1
+2 n+1
+…+2 n+2
>loga(1-2a),2 2n
设Hn=
+2 n+1
+…+2 n+2
,2 2n
则 Hn+1=
+2 n+2
+…+2 n+3
+2 2n
+2 2n+1
,2 2n+2
∴Hn+1-Hn=
+2 2n+1
-2 2(n+1)
=2 n+1
-2 2n+1
>0,2 2n+2
∴数列{Hn}是单调递增数列,
∴(Hn)min=T1=1,(10分)
要使不等式恒成立,只需loga(1-2a)<1,
即loga(1-2a)<logaa,
∴
或0<a<1 1-2a>0 1-2a>a a>1 1-2a>0 1-2a<a
解得0<a<
.1 3
故使不等式对于任意正整数n恒成立的a的取值范围是(0,
).(12分)1 3