问题 填空题
已知函数f(x)=
x2+ax+11
x+1
(a∈R),若对于任意的X∈N*,f(x)≥3恒成立,则a的取值范围是______.
答案

∵x∈N*

∴f(x)=

x2+ax+11
x+1
≥3恒成立⇔x2+ax+11≥3x+3恒成立,

∴ax≥-x2-8+3x,又x∈N*

∴a≥-

8
x
-x+3恒成立,

∴a≥g(x)max

令g(x)=-

8
x
-x+3(x∈N*),再令h(x)=x+
8
x
(x∈N*),

∵h(x)=x+

8
x
在(0,2
2
]上单调递减,在[2
2
,+∞)上单调递增,而x∈N*

∴h(x)在x取距离2

2
较近的整数值时达到最小,而距离2
2
较近的整数为2和3,

∵h(2)=6,h(3)=

17
3
,h(2)>h(3),

∴当x∈N*时,h(x)min=

17
3
.又g(x)=-
8
x
-x+3=-h(x)+3,

∴g(x)max=-

17
3
+3=-
8
3

∴a≥-

8
3

单项选择题
单项选择题 案例分析题