问题 解答题
已知数列{an}中,a1=
1
2
、点(n、2an+1-an)
在直线y=x上,其中n=1,2,3….
(Ⅰ)令bn=an-1-an-3,求证数列{bn}是等比数列;
(Ⅱ)求数列{an}的通项;
(Ⅲ)设Sn、Tn分别为数列{an}、{bn}的前n项和,是否存在实数λ,使得数列{
SnTn
n
}
为等差数列?若存在,试求出λ.若不存在,则说明理由.
答案

(I)由已知得a1=

1
2
,2an+1=an+n,

a2=

3
4
a2-a1-1=
3
4
-
1
2
-1=-
3
4

又bn=an+1-an-1,bn+1=an+2-an+1-1,

bn+1
bn
=
an+1-an-1
an+2-an+1-1
=
an+1+(n+1)
2
-
an+n
2
an+1-an-1
=
an+1-an-1
2
an+1-an-1
=
1
2
.

∴{bn}是以-

3
4
为首项,以
1
2
为公比的等比数列.

(II)由(I)知,bn=-

3
4
×(
1
2
)n-1=-
3
2
×
1
2n

an+1-an-1=-

3
2
×
1
2n

a2-a1-1=-

3
2
×
1
2
a3-a2-1=-
3
2
×
1
22

an-an-1-1=-

3
2
×
1
2n-1

将以上各式相加得:

an-a1-(n-1)=-

3
2
(
1
2
+
1
22
+…+
1
2n-1
),

an=a1+n-1-

3
2
×
1
2
(1-
1
2n-1
)
1-
1
2
=
1
2
+(n-1)-
3
2
(1-
1
2n-1
)=
3
2n
+n-2.

an=

3
2n
+n-2.

(III)存在λ=2,使数列{

SnTn
n
}是等差数列.

由(I)、(II)知,an+2bn=n-2

Sn+2T=

n(n+1)
2
-2n
SnTn
n
=
n(n+1)
2
-2n-2TnTn
n
=
n-3
2
+
λ-2
n
Tn

Tn=b1+b2++bn=

-
3
4
(1-
1
2n
)
1-
1
2
=-
3
2
(1-
1
2n
)=-
3
2
+
3
2n+1
SnTn
n
=
n-3
2
+
λ-2
n
(-
3
2
+
3
2n+1
)

∴当且仅当λ=2时,数列{

SnTn
n
}是等差数列.

单项选择题 A1/A2型题
问答题