已知数列{an}中,a1=
(Ⅰ)令bn=an-1-an-3,求证数列{bn}是等比数列; (Ⅱ)求数列{an}的通项; (Ⅲ)设Sn、Tn分别为数列{an}、{bn}的前n项和,是否存在实数λ,使得数列{
|
(I)由已知得a1=
,2an+1=an+n,1 2
∵a2=
,a2-a1-1=3 4
-3 4
-1=-1 2
,3 4
又bn=an+1-an-1,bn+1=an+2-an+1-1,
∴
=bn+1 bn
=an+1-an-1 an+2-an+1-1
=
-an+1+(n+1) 2 an+n 2 an+1-an-1
=an+1-an-1 2 an+1-an-1
.1 2
∴{bn}是以-
为首项,以3 4
为公比的等比数列.1 2
(II)由(I)知,bn=-
×(3 4
)n-1=-1 2
×3 2
,1 2n
∴an+1-an-1=-
×3 2
,1 2n
∴a2-a1-1=-
×3 2
,a3-a2-1=-1 2
×3 2
,1 22
…
∴an-an-1-1=-
×3 2
,1 2n-1
将以上各式相加得:
∴an-a1-(n-1)=-
(3 2
+1 2
+…+1 22
),1 2n-1
∴an=a1+n-1-
×3 2
=
(1-1 2
)1 2n-1 1- 1 2
+(n-1)-1 2
(1-3 2
)=1 2n-1
+n-2.3 2n
∴an=
+n-2.3 2n
(III)存在λ=2,使数列{
}是等差数列.Sn+λTn n
由(I)、(II)知,an+2bn=n-2
∴Sn+2T=
-2nn(n+1) 2
=Sn+λTn n
=
-2n-2Tn+λTnn(n+1) 2 n
+n-3 2
Tnλ-2 n
又Tn=b1+b2++bn=
=--
(1-3 4
)1 2n 1- 1 2
(1-3 2
)=-1 2n
+3 2 3 2n+1
=Sn+λTn n
+n-3 2
(-λ-2 n
+3 2
)3 2n+1
∴当且仅当λ=2时,数列{
}是等差数列.Sn+λTn n