问题 解答题
已知正项数列{an}满足a1=
1
2
,且an+1=
an
1+an

(1)证明数列{
1
an
}为等差数列,并求{an}的通项公式;
(2)求证:
a1
2
+
a2
3
+
a3
4
+…+
an
n+1
<1
答案

(1)由已知得an+1an=an-an+1an

两边同除以an+1an得出

an+1
-
1
an
=1,

∴数列{

1
an
}为公差为1的等差数列,且首项为
1
a1
=2

根据等差数列的通项公式可得

1
an
=2+(n-1)=n+1
an=
1
n+1

(2)证明:∵

an
n+1
=
1
(n+1)2
1
n
-
1
n+1

 
a1
2
+
a2
3
+
a3
4
+…+
an
n+1
1
2×1
+
1
3×2
+
1
4×3
+…+
1
(n+1)n
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1
=1-
1
n+1
<1

填空题
多项选择题