问题
解答题
已知正项数列{an}满足a1=
(1)证明数列{
(2)求证:
|
答案
(1)由已知得an+1an=an-an+1an
两边同除以an+1an得出
-1 an+1
=1,1 an
∴数列{
}为公差为1的等差数列,且首项为1 an
=21 a1
根据等差数列的通项公式可得
=2+(n-1)=n+11 an ∴an= 1 n+1
(2)证明:∵
=an n+1
<1 (n+1)2
-1 n 1 n+1
∴
+a1 2
+a2 3
+…+a3 4
<an n+1
+1 2×1
+1 3×2
+…+1 4×3 1 (n+1)n =1-
+1 2
-1 2
+1 3
-1 3
+…+1 4
-1 n
=1-1 n+1
<11 n+1