问题
解答题
已知数列{an}满足a 1=
(1)求证:数列{
(2)令bn=an•an+1,Tn=b1+b2+b3+…+bn,求证:Tn<
|
答案
证明:(1)∵
=an an+1 4an+2 an+1+2
∴2an-2an+1=3anan+1
两边同时除以anan+1可得,
-1 an+1
=1 an 3 2
∴数列列{
}是以1 an
=1 a1
为首项,以5 2
为公差的等差数列,3 2
∴
=1 an
+5 2
(n-1)=3 2 3n+2 2
∴an=2 3n+2
(2)bn=an•an+1=
•2 3n+2
=2 3n+5
(4 3
-1 3n+2
)1 3n+5
∴Tn=b1+b2+b3+…+bn=
(4 3
-1 5
)<1 3n+5 4 15