问题 解答题
已知数列{an}满足a 1=
2
5
,且对任意n∈N*,都有
an
an+1
=
4an+2
an+1+2

(1)求证:数列{
1
an
}为等差数列,并求{an}的通项公式;
(2)令bn=an•an+1,Tn=b1+b2+b3+…+bn,求证:Tn
4
15
答案

证明:(1)∵

an
an+1
=
4an+2
an+1+2

∴2an-2an+1=3anan+1

两边同时除以anan+1可得,

1
an+1
-
1
an
=
3
2

∴数列列{

1
an
}是以
1
a1
=
5
2
为首项,以
3
2
为公差的等差数列,

1
an
=
5
2
+
3
2
(n-1)
=
3n+2
2

∴an=

2
3n+2

(2)bn=anan+1=

2
3n+2
2
3n+5
=
4
3
(
1
3n+2
-
1
3n+5
)

Tn=b1+b2+b3+…+bn=

4
3
(
1
5
-
1
3n+5
)<
4
15

选择题
填空题