问题
解答题
已知
(1)求数列an的第n+1项; (2)若
|
答案
(1)∵
,x
,f(x) 2
(x≥0)成等差数列,3
∴
×2=f(x) 2
+x
∴f(x)=(3
+x
)2∵Sn=f(Sn-1)(n≥2),∴Sn=f(Sn-1)=(3
+Sn-1
23)
∴
=Sn
+Sn-1
, 3
-Sn
=Sn-1 3
∴{
}是以Sn
为公差的等差数列.3
∵a1=3∴S1=3,∴
=Sn
+(n-1)S1
=3
n,3
∴Sn=3n2(n∈N+)
∴an+1=Sn+1-Sn=3(n+1)2-3n2=6n+3;
(2)∵数列
是bn
,1 an+1
的等比中项,1 an
∴(
)2=bn
×1 an+1 1 an
∴bn=
=1 an+1an
=1 3(2n+1)×3(2n-1)
(1 18
-1 2n-1
) 1 2n+1
Tn=b1+b2+…+bn=
[(1-1 18
)+( 1 3
-1 3
)+…+(1 5
-1 2n-1
)]=1 2n+1
(1-1 18
)1 2n+1