问题
解答题
数列{an}的前n项和记为Sn,at=t,点(Sn,an+1)在直线y=2x+1上,n∈N*. (Ⅰ)当实数t为何值时,数列{an}是等比数列? (Ⅱ)在(Ⅰ)的结论下,设bn=log3an+1,Tn是数列{
|
答案
(本小题满分12分)
(Ⅰ)由题意得an+1=2Sn+1,an=2Sn-1+1(n≥2)(1分)
两式相减得an+1-an=2an,即an+1=3an,(4分)
所以当n≥2时,{an}是等比数列,
要使n≥1时,{an}是等比数列,则只需
=a2 a1
=3,从而t=1.(7分)2t+1 t
(Ⅱ)由(Ⅰ)得知an=3n-1,bn=log3an+1=n,(9分)
∴
=1 bn•bn+1
=1 (n+1)n
-1 n
(10分)1 n+1
T2011=
+…+1 b1b2
=(1-1 b2011b2012
)+(1 2
-1 2
)+…+(1 3
-1 2011
)=1 2012
(12分)2011 2012