设f(x)=
(Ⅰ)求x2004的值; (Ⅱ)若an=
(Ⅲ)是否存在最小整数m,使得对于任意n∈N*有xn<
|
解(Ⅰ)由x=
,可以化为ax(x+2)=x,x a(x+2)
∴ax2+(2a-1)x=0,
由△=(2a-1)2=0得
当且仅当a=
时,x=f(x)有惟一解x=0,1 2
从而f(x)=
…(1分)2x x+2
又由已知f(xn)=xn+1得:
=xn+1,2xn xn+2
∵
=1 xn+1
+1 2
,1 xn
即
-1 xn+1
=1 xn
(n∈N*)1 2
∴数列{
}是首项为1 xn
,公差为1 x1
的等差数列…(3分)1 2
∴
=1 xn
+1 x1
=n-1 2
,2+(n-1)x1 2x1
∴xn=2x1 (n-1)x1+2
又∵f(x1)=
,1 1003
∴
=2x1 x1+2
,即x1=1 1003
…(4分)2 2005
∵xn=
=2× 2 2005 (n-1)•
+22 2005
…(5分)2 n+2004
故x2004=
=2 2004+2004
…(6分)1 2004
(Ⅱ)证明:∵xn=
,2 n+2004
∴an=
×4-4009=2n-1…(7分)n+2004 2
∴bn=
=
+a 2n a 2n-1 2anan+1
=(2n-1)2+(2n+1)2 2(2n-1)(2n+1) 4n2+1 4n2-1
=1+
=1+2 (2n-1)(2n+1)
-1 2n-1
…(8分)1 2n+1
∴b1+b2+…+bn-n=(1+1-
)+(1+1 3
-1 3
)+…+(1+1 5
-1 2n-1
)-n1 2n+1
=1-
<1…(10分)1 2n+1
(Ⅲ)由于xn=
,若2 n+2004
<2 n+2004
(n∈N*)恒成立,m 2005
∵(
)max=2 n+2004
,2 2005
∴
>m 2005
,2 2005
∴m>2,而m为最小正整数,
∴m=3…(12分)