问题
解答题
数列{an}满足a1=1,an+1=
(Ⅰ)证明:数列{
(Ⅱ)求数列{an}的通项公式an; (Ⅲ)设bn=
|
答案
(Ⅰ)由已知可知
=an+1 2n+1
,即an an+2n
=2n+1 an+1
+1,即2n an
-2n+1 an+1
=12n an
∴数列{
}是公差为1的等差数列.2n an
(Ⅱ)由(Ⅰ)知
=2n an
+(n-1)×1=2+(n-1)×1=n+1,∴an=2 a1
.2n n+1
(Ⅲ)由(Ⅱ)知bn=
an=1 n•2n+1
×1 n•2n+1 2n n+1
∴bn=
=1 2n(n+1)
(1 2
-1 n
)1 n+1
∴Sn=b1+b2+…+bn=
(1-1 2
)+1 2
(1 2
-1 2
)+…+1 3
(1 2 1 n
)=1 n+1
[(1-1 2
)+(1 2
-1 2
)+…+(1 3
-1 n
)]=1 n+1
.n 2(n+1)