问题
填空题
设a∈R,函数f (x)=ex+
|
答案
因为f(x)=ex+
是偶函数,所以总有f(-x)=f(x),即e-x+a ex
=ex+a e-x
,整理得(a-1)(ex-a ex
)=0,所以有a-1=0,即a=1.1 ex
则f(x)=ex+
,f′(x)=ex-1 ex
,令f′(x)=ex-1 ex
=1 ex
,整理即为2e2x-3ex-2=0,解得ex=2,所以x=ln2.3 2
故答案为:ln2.