问题
填空题
已知定义在R上的函数f(x)对于任意的x∈R,都有f(x+2)=-f(x)成立,设an=f(n),则数列{an}中值不同的项最多有44项.
答案
由题设条件,(x)对于任意的x∈R,都有f(x+2)=-f(x)成立
∴f(x+2)=-f(x)=f(x-2),即T=4
因为an=f(n),所以an+4=f(n+4)=f(n)=an,
故a4n+1=a1,a4n+2=a2,a4n+3=a3,a4n+4=a4
∴数列{an}中值不同的项最多有4项
故答案为4