问题
解答题
设函数f(x)=logax(a>0,a≠1),已知数列f(x1),f(x2),…,f(xn),…是公差为2的等差数列,且x1=a2. (Ⅰ)求数列{xn}的通项公式; (Ⅱ)当a=
|
答案
(Ⅰ)由题意得,f(x1)=logaa2=2,且d=2,
∴f(xn)=2+(n-1)•2=2n,即logaxn=2n,
∴xn=a2n,
(Ⅱ)当a=
时,xn•f(xn)=2n•(2
)2n=n•2n+1,2
,Sn=1•22+2•23+3•24+…+n•2n+1 2Sn=1•23+2•24+…+(n-1)•2n+1+n•2n+2
两式相减得,
,-Sn=22+23+24+…+2n+1-n•2n+2 =
-n•2n+2=(1-n)2n+2-422(1-2n) 1-2
∴Sn=(n-1)2n+2+4.