问题 解答题
设函数f(x)=logax(a>0,a≠1),已知数列f(x1),f(x2),…,f(xn),…是公差为2的等差数列,且x1=a2
(Ⅰ)求数列{xn}的通项公式;
(Ⅱ)当a=
2
时,求数列{xn•f(xn)}的前n项和Sn
答案

(Ⅰ)由题意得,f(x1)=logaa2=2,且d=2,

∴f(xn)=2+(n-1)•2=2n,即logaxn=2n,

xn=a2n

(Ⅱ)当a=

2
时,xn•f(xn)=2n•(
2
)2n=n•2n+1

Sn=1•22+2•23+3•24+…+n•2n+1
2Sn=1•23+2•24+…+(n-1)•2n+1+n•2n+2

两式相减得,

-Sn=22+23+24+…+2n+1-n•2n+2
=
22(1-2n)
1-2
-n•2n+2=(1-n)2n+2-4

Sn=(n-1)2n+2+4

填空题
多项选择题