问题 解答题
设数列{an}的前n项和为Sn,a1=1,Sn=nan-2n(n-1).
(I)求证:数列{an}是等差数列;
(II)设数列{
1
anan+1
}
的前n项和为Tn,求Tn
答案

(I)由Sn=nan-2n(n-1),

则Sn+1=nan+1-2(n+1)n,

又由an+1=Sn+1-Sn可得an+1=Sn+1-Sn=(n+1)an+1-nan-4n,

即an+1-an=4,

则数列{an}是以1为首项,4为公差的等差数列;

(II)由(1)可得an=4n-3.

Tn=

1
a1a2
+…+
1
anan+1

=

1
1×5
+
1
5×9
+
1
9×13
+…+
1
(4n-3)×(4n+1)

=

1
4
(1-
1
5
+
1
5
-
1
9
+
1
9
-
1
13
+…+
1
4n-3
-
1
4n+1
)

=

1
4
(1-
1
4n+1
).

选择题
判断题