问题
解答题
设数列{an}的前n项和为Sn,a1=1,Sn=nan-2n(n-1). (I)求证:数列{an}是等差数列; (II)设数列{
|
答案
(I)由Sn=nan-2n(n-1),
则Sn+1=nan+1-2(n+1)n,
又由an+1=Sn+1-Sn可得an+1=Sn+1-Sn=(n+1)an+1-nan-4n,
即an+1-an=4,
则数列{an}是以1为首项,4为公差的等差数列;
(II)由(1)可得an=4n-3.
则Tn=
+…+1 a1a2 1 anan+1
=
+1 1×5
+1 5×9
+…+1 9×13 1 (4n-3)×(4n+1)
=
(1-1 4
+1 5
-1 5
+1 9
-1 9
+…+1 13
-1 4n-3
)1 4n+1
=
(1-1 4
).1 4n+1