问题 单项选择题

线性规划问题就是求出一组变量,在一组线性约束条件下,使某个线性目标函数达到极大(小)值。满足线性约束条件的变量区域称为可行解区。由于可行解区的边界均是线性的(平直的),属于单纯形,所以线性目标函数的极值只要存在,就一定会在可行解区边界的某个顶点达到。因此,在求解线性规划问题时,如果容易求出可行解区的所有顶点,那么只要在这些顶点处比较目标函数的值就可以了。
例如,线性规划问题:max S=x+y(求S=x+y的最大值);2x+y≤7,x+2≤8,x≥0,y≥0的可行解区是由四条直线2x+y=7,x+2y=8,x=0,y=0围成的,共有四个顶点。除了原点外,其他三个顶点是 (31) 。因此,该线性规划问题的解为 (32)

A.x=2,y=3

B.x=0,y=7

C.x=0,y=4

D.x=8,y=0

答案

参考答案:A

解析:

[分析]: 本题中的可行解区是由四条直线2x+y=7,x+2y=8,x=0,y=0围成的,可行解区的每个顶点都是由两条直线相交得到的。
2x+y=7与x=0的交点(0,7)不满足条件x+2y≤8,因此(0,7)不是可行解区的顶点(落在可行解区外)。
x+2y=8与y=0的交点(8,0)不满足条件2x+y≤7,因此(8,0)不是可行解区的顶点(落在可行解区外)。
2x+y=7与x+2y=8的交点(2,3),2x+y=7与y=0的交点(3.5,0),x+2y=8与x=0的交点(0,4),x=0与y=0的交点(0,0)都属于可行解区的顶点。在这四个顶点中,x=2,y=3可使目标函数S达到极大值5。

单项选择题
单项选择题