问题 解答题
(1)已知数列{an}的前n项和Sn=3n2-2n,求证数列{an}成等差数列.
(2)已知
1
a
1
b
1
c
成等差数列,求证
b+c
a
c+a
b
a+b
c
也成等差数列.
答案

(1)证明:当n=1时,a1=S1=3-2=1,

当n≥2时,an=Sn-Sn-1=3n2-2n-[3(n-1)2-2(n-1)]=6n-5,

n=1时,亦满足,∴an=6n-5(n∈N*).

首项a1=1,an-an-1=6n-5-[6(n-1)-5]=6(常数)(n∈N*),

∴数列{an}成等差数列且a1=1,公差为6.

(2)∵

1
a
1
b
1
c
成等差数列,

2
b
=
1
a
+
1
c
化简得2ac=b(a+c).

b+c
a
+
a+b
c
=
bc+c2+a2+ab
ac
=
2ac+a2+c2
ac
=
(a+c)2
ac
=
(a+c)2
b(a+c)
2
=
2(a+c)
b

b+c
a
c+a
b
a+b
c
也成等差数列.

判断题
判断题