问题
填空题
函数f(x)=
|
答案
有函数解析式可得:其为定义在实数集R上的奇函数.
所以有:f(0)=0,∴a=0,
又∵f(1)=-f(-1)
∴0=-[(-1)+b]⇒b=1.
∴a+b=1.
故答案为:1.
函数f(x)=
|
有函数解析式可得:其为定义在实数集R上的奇函数.
所以有:f(0)=0,∴a=0,
又∵f(1)=-f(-1)
∴0=-[(-1)+b]⇒b=1.
∴a+b=1.
故答案为:1.