(Ⅰ)∵f(x)=+1,∴f′(x)=,x∈(0,π).
设g(x)=xcos x-sin x,x∈(0,π),则g′(x)=-xsin x<0(∵x∈(0,π)).
∴g(x)在(0,π)上为减函数,又∵g(0)=0,
∴x∈(0,π)时,g(x)<0,
∴f′(x)=<0,
∴f(x)在(0,π)上是减函数.(6分)
(Ⅱ)∵(+)2=1+2,
∴x=3或4时,(+)2min=1,
∴(+)min=1.
又0≤a≤+对一切x∈[3,4]恒成立,
∴0≤a≤1.
(Ⅲ)证明:显然当a=0,1或x=0,π时,不等式成立.
当0<a<1且0<x<π,原不等式等价于(1-a)sin(1-a)x≥(1-2a)sin x.(10分)
下面证明一个更强的不等式:(1-a)sin(1-a)x≥(1-2a+a2)sin x=(1-a)2sin x ①
即sin(1-a)x≥(1-a)sin x. ②
亦即 ≥.
由(1)知 在(0,π)上是减函数,
又∵(1-a)x<x,∴>.(12分)
∴不等式②成立,从而①成立.
又∵(1-2a+a2)sin x>(1-2a)sin x,∴(1-a)sin(1-a)x>(1-2a)sin x.
综上,∴0≤x≤π且0≤a≤1时,原不等式成立.(14分)