问题 解答题
设函数f(x)=
x+sinx
x

(Ⅰ) 判断f(x)在区间(0,π)上的增减性并证明之;
(Ⅱ) 若不等式0≤a≤
x-3
+
4-x
对x∈[3,4]恒成立,求实数a的取值范围M;
(Ⅲ)设0≤x≤π,且a∈M,求证:(2a-1)sinx+(1-a)sin(1-a)x≥0.
答案

(Ⅰ)∵f(x)=

sinx
x
+1,∴f′(x)=
xcosx-sinx
x2
,x∈(0,π).
设g(x)=xcos x-sin x,x∈(0,π),则g′(x)=-xsin x<0(∵x∈(0,π)).
∴g(x)在(0,π)上为减函数,又∵g(0)=0,
∴x∈(0,π)时,g(x)<0,
∴f′(x)=
g(x)
x2
<0,
∴f(x)在(0,π)上是减函数.(6分)

(Ⅱ)∵(

x-3
+
4-x
2=1+2
(x-3)(4-x)

∴x=3或4时,(
x-3
+
4-x
2min=1,
∴(
x-3
+
4-x
min=1.
又0≤a≤
x-3
+
4-x
对一切x∈[3,4]恒成立,
∴0≤a≤1.

(Ⅲ)证明:显然当a=0,1或x=0,π时,不等式成立.
当0<a<1且0<x<π,原不等式等价于(1-a)sin(1-a)x≥(1-2a)sin x.(10分)
下面证明一个更强的不等式:(1-a)sin(1-a)x≥(1-2a+a2)sin x=(1-a)2sin x ①
即sin(1-a)x≥(1-a)sin x. ②
亦即

sin(1-a)x
(1-a)x
sinx
x

由(1)知
sinx
x
在(0,π)上是减函数,

又∵(1-a)x<x,∴

sin(1-a)x
(1-a)x
sinx
x
.(12分)
∴不等式②成立,从而①成立.
又∵(1-2a+a2)sin x>(1-2a)sin x,∴(1-a)sin(1-a)x>(1-2a)sin x.
综上,∴0≤x≤π且0≤a≤1时,原不等式成立.(14分)

选择题
单项选择题