问题
解答题
数列{an}满足递推式an=3an-1+3n-1(n≥2),其中a4=365, (Ⅰ)求a1,a2,a3; (Ⅱ)若存在一个实数λ,使得{
(Ⅲ)求数列{an}的前n项之和. |
答案
(Ⅰ)由an=3an-1+3n-1,及a4=365知a4=3a3+34-1=365,则a3=95
同理求得a2=23,a1=5
(Ⅱ)∵{
}为一个等差数列,于是设an+λ 3n
=xn+yan+λ 3n
∴an=(xn+y)•3n-λ,又由a1=5,a2=23,a3=95
知5=a1=(x+y)•3-λ 23=a2=(2x+y)•9-λ 95=a3=(3x+y)•27-λ &求得λ=-
,x=1,y=1 2 1 2
∴an=(n+
)•3n+1 2
,而an=(n+1 2
)•3n+1 2
满足递推式1 2
因此λ=-
.1 2
(Ⅲ)∵an=(n+
)•3n+1 2
先求bn=(n+1 2
)•3n的前n项和1 2
记Tn=(1+
)•3n+(2+1 2
)•32+…+(n+1 2
)•3n1 2
则3Tn=(1+
)•32+(2+1 2
)•33+…+(n+1 2
)•3n+11 2
由上两式相减
Tn-3Tn=(1+
)3+32+33+…+3n-(n+1 2
)•3n+11 2
-2Tn=
+9 2
-(n+32-3n+1 1-3
)•3n+1=1 2
+9 2
(3n+1-9)-(n+1 2
)•3n+11 2
=-n•3n+1
Tn=
n•3n+11 2
因此{an}•前n项和为Tn+
=n 2
•3n+1+n 2
=n 2
(3n+1+1).n 2