问题 解答题
数列{an}满足递推式an=3an-1+3n-1(n≥2),其中a4=365,
(Ⅰ)求a1,a2,a3;  
(Ⅱ)若存在一个实数λ,使得{
an
3n
}
为等差数列,求λ值;
(Ⅲ)求数列{an}的前n项之和.
答案

(Ⅰ)由an=3an-1+3n-1,及a4=365知a4=3a3+34-1=365,则a3=95

同理求得a2=23,a1=5

(Ⅱ)∵{

an
3n
}为一个等差数列,于是设
an
3n
=xn+y

∴an=(xn+y)•3n-λ,又由a1=5,a2=23,a3=95

5=a1=(x+y)•3-λ
23=a2=(2x+y)•9-λ
95=a3=(3x+y)•27-λ
 &求得λ=-
1
2
,x=1,y=
1
2

an=(n+

1
2
)•3n+
1
2
,而an=(n+
1
2
)•3n+
1
2
满足递推式

因此λ=-

1
2

(Ⅲ)∵an=(n+

1
2
)•3n+
1
2
先求bn=(n+
1
2
)•3n的前n项和

记Tn=(1+

1
2
)•3n+(2+
1
2
)•32+…+(n+
1
2
)•3n

则3Tn=(1+

1
2
)•32+(2+
1
2
)•33+…+(n+
1
2
)•3n+1

由上两式相减

Tn-3Tn=(1+

1
2
)3+32+33+…+3n-(n+
1
2
)•3n+1

-2Tn=

9
2
+
32-3n+1
1-3
-(n+
1
2
)•3n+1=
9
2
+
1
2
(3n+1-9)-(n+
1
2
)•3n+1

=-n•3n+1

Tn=

1
2
n•3n+1

因此{an}•前n项和为Tn+

n
2
=
n
2
3n+1+
n
2
=
n
2
(3n+1+1).

单项选择题
单项选择题