问题 填空题

已知△ABC的内角A,B,C成等差数列,则cos2A+cos2C的取值范围是______.

答案

∵A,B,C成等差数列,

∴2B=A+C,又A+B+C=π,

∴B=60°,即A+C=120°,

cos2A+cos2C

=

1+cos2A
2
+
1+cos2c
2

=1+

cos2A+cos2C
2

=1+cos(A+C)cos(A-C)

=1-

1
2
cos(A-C),

∵-1≤cos(A-C)≤1,

1
2
≤1-
1
2
cos(A-C)≤
3
2

则cos2A+cos2C的取值范围是[

1
2
3
2
].

故答案为:[

1
2
3
2
]

单项选择题
单项选择题 A型题