问题
填空题
已知△ABC的内角A,B,C成等差数列,则cos2A+cos2C的取值范围是______.
答案
∵A,B,C成等差数列,
∴2B=A+C,又A+B+C=π,
∴B=60°,即A+C=120°,
cos2A+cos2C
=
+1+cos2A 2 1+cos2c 2
=1+cos2A+cos2C 2
=1+cos(A+C)cos(A-C)
=1-
cos(A-C),1 2
∵-1≤cos(A-C)≤1,
∴
≤1-1 2
cos(A-C)≤1 2
,3 2
则cos2A+cos2C的取值范围是[
,1 2
].3 2
故答案为:[
,1 2
]3 2