问题
解答题
已知数列{an}中,a1=2,a2=3,其前n项和Sn满足Sn+1+Sn-1=2Sn+1(n≥2,n∈N*).
(Ⅰ)求证:数列{an}为等差数列,并求{an}的通项公式;
(Ⅱ)设bn=2nan,求数列{bn}的前n项和Tn.
答案
(Ⅰ)证明:由已知:(sn+1-sn)-(sn-sn-1)=1 (n≥2,n∈N*),
即an+1-an=1 (n≥2,n∈N*)且a2-a1=1.
∴数列{an}是以a1=2为首项,公差为1的等差数列.
∴an=n+1.(6分)
(Ⅱ)由(Ⅰ)知bn=(n+1)•2n,它的前n项和为Tn
Tn=2•21+3•22+4•23++n•2n-1+(n+1)•2n(1)
2Tn=2•22+3•23+4•24++n•2n+(n+1)•2n+1(2)
(1)-(2):
-Tn=2•21+22+23+24++2n-(n+1)•2n+1
=4+
-(n+1)•2n+122(1-2n-1) 1-2
=-n•2n+1
∴Tn=n•2n+1(13分)