问题 解答题

已知数列 {an}的前n项和Sn=2n2-3n

(1)证明数列{an}是等差数列.

(2)若bn=an•2n,求数列{bn}的前n项和Tn

答案

(1)a1=S1=-1

当n≥2时,an=Sn-Sn-1=2n2-3n-2(n-1)2+3(n-1)=4n-5

又a1适合上式  an=4n-5(n∈N*)

当n≥2时,an-an-1=4n-5-4(n-1)+5=4{an}是Ap且d=4,a1=-1

(2)bn=(4n-5)•2n(差比数列求和)

∴Sn=-21+3•22+…(4n-5)•2n

①2Sn=-22+…+(4n-9)•2n+(4n-5)•2n+1

①-②得-Sn=-21+4•22+…+4•2n-(4n-5)•2n+1=-2+4•

4(2n-1-1)
2-1
-(4n-5)•2n+1=-18-(4n-9)•2n+1

∴Sn=18+(4n-9)•2n+1

问答题
多项选择题