问题
解答题
已知函数f(x)=x2-2mx+2-m
(1)若不等式f(x)≥-mx+2在R上恒成立,求实数m的取值范围
(2)设函数f(x)在[0,1]上的最小值为g(m),求g(m)的解析式及g(m)=1时实数m的值.
答案
(1)由题意知,f(x)≥-mx在R上恒成立,
即x2-mx+2-m≥0恒成立,
∴△=m2+4m-8≤0,
解得-2-2
≤m≤-2+23
.3
∴实数m的取值范围是[-2-2
,-2+23
].3
(2)函数f(x)=x2-2mx+2-m的对称轴为x=m,
①当m<0时,
函数f(x)在[0,1]上的最小值g(m)=f(0)=2-m.
②当0≤m≤1时,
函数f(x)在[0,1]上的最小值g(m)=f(1)=-3m+3,
综上所述,g(x)=
,2-m,m<0 -m2-m+2,0≤m≤1 -3m+3,m>1
∵g(m)=1,
∴m=
.
-15 2