问题
填空题
二阶常系数非齐次线性微分方程y"-4y’+3y=2e2x的通解为______.
答案
参考答案:y=C1e3x+C2ex-2e2x
解析:齐次方程特征方程为r2-4r+3=0
r1=1,r2=3
非齐次特征为 y*=Ae2x
代入方程y"-4y’+3y=2e2x得A=-2,则原方程通解为
y=C1e3x+C2ex-2e2x
二阶常系数非齐次线性微分方程y"-4y’+3y=2e2x的通解为______.
参考答案:y=C1e3x+C2ex-2e2x
解析:齐次方程特征方程为r2-4r+3=0
r1=1,r2=3
非齐次特征为 y*=Ae2x
代入方程y"-4y’+3y=2e2x得A=-2,则原方程通解为
y=C1e3x+C2ex-2e2x