问题
解答题
已知数列{an}满足:a1=2,且an+1=2-
(1)设bn=
(2)求数列{an}的通项公式; (3)设cn=an+
|
答案
(1)∵a1=2,且an+1=2-
,n∈N*.1 an
∴a2=2-
=1 2
,3 2
a3=2-
=2 3
,4 3
a4=1-
=3 4
,5 4
…
猜想an=
.n+1 n
用数学归纳法进行证明:
①a1=
=2,成立.2 1
②假设n=k时,成立,即ak=
,k+1 k
则当n=k+1时,ak+1=2-
=2-1 ak
=k k+1
,成立.k+2 k+1
由①②知,an=
.n+1 n
∵bn=
,1 an-1
∴bn+1-bn=
-1 an+1-1 1 an-1
=
-1 1- 1 an 1 1- 1 an-1
=
-1 1- n n+1 1 1- n-1 n
=(n+1)-n=1,
∴数列{bn}是等差数列.
(2))∵a1=2,且an+1=2-
,n∈N*.1 an
∴a2=2-
=1 2
,3 2
a3=2-
=2 3
,4 3
a4=1-
=3 4
,5 4
…
猜想an=
.n+1 n
用数学归纳法进行证明:
①a1=
=2,成立.2 1
②假设n=k时,成立,即ak=
,k+1 k
则当n=k+1时,ak+1=2-
=2-1 ak
=k k+1
,成立.k+2 k+1
由①②知,an=
.n+1 n
(3)∵cn=an+
,an=1 an
,n+1 n
∴cn=
+n+1 n
= 2+n n+1
-1 n
,1 n+1
∴c1+c2+…+cn=2n+(1-
)+(1 2
-1 2
)+…+(1 3
-1 n
)1 n+1
=2n+1-
<2n+1.1 n+1
∵c1+c2+…+cn=2n+(1-
)+(1 2
-1 2
)+…+(1 3
-1 n
)1 n+1
=2n+1-
=2n+1 n+1
>2n.n n+1
∴2n<c1+c2+…+cn<2n+1,n∈N*.