问题 解答题
已知数列{an}满足:a1=2,且an+1=2-
1
an
,n∈N*
(1)设bn=
1
an-1
,求证:{bn}是等差数列;
(2)求数列{an}的通项公式;
(3)设cn=an+
1
an
,求证:2n<c1+c2+…+cn<2n+1,n∈N*
答案

(1)∵a1=2,且an+1=2-

1
an
,n∈N*

∴a2=2-

1
2
=
3
2

a3=2-

2
3
=
4
3

a4=1-

3
4
=
5
4

猜想an=

n+1
n

用数学归纳法进行证明:

a1=

2
1
=2,成立.

②假设n=k时,成立,即ak=

k+1
k

则当n=k+1时,ak+1=2-

1
ak
=2-
k
k+1
=
k+2
k+1
,成立.

由①②知,an=

n+1
n

∵bn=

1
an-1

∴bn+1-bn=

1
an+1-1
-
1
an-1

=

1
1-
1
an
-
1
1-
1
an-1

=

1
1-
n
n+1
-
1
1-
n-1
n

=(n+1)-n=1,

∴数列{bn}是等差数列.

(2))∵a1=2,且an+1=2-

1
an
,n∈N*

∴a2=2-

1
2
=
3
2

a3=2-

2
3
=
4
3

a4=1-

3
4
=
5
4

猜想an=

n+1
n

用数学归纳法进行证明:

a1=

2
1
=2,成立.

②假设n=k时,成立,即ak=

k+1
k

则当n=k+1时,ak+1=2-

1
ak
=2-
k
k+1
=
k+2
k+1
,成立.

由①②知,an=

n+1
n

(3)∵cn=an+

1
an
an=
n+1
n

cn=

n+1
n
+
n
n+1
= 2+
1
n
 -
1
n+1

∴c1+c2+…+cn=2n+(1-

1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1

=2n+1-

1
n+1
<2n+1.

∵c1+c2+…+cn=2n+(1-

1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1

=2n+1-

1
n+1
=2n+
n
n+1
>2n.

∴2n<c1+c2+…+cn<2n+1,n∈N*

判断题
单项选择题