问题 填空题
设{an}与{bn}是两个等差数列,且
a1+a2…+an
b1+b2…+bn
=
3n+1
4n+3
对任意自然数n∈N+都成立,
     那么
an
bn
=

______.
答案

∵a1+a2+…+an=

n(a1+an
2
,b1+b2+…+bn=
n(b1+bn)
2

且两数列{an}和{bn}都为等差数列,

a1+a2+…+an
b1+b2+…+bn
=
n(a1+an
2
n(b1+bn
2
=
a1+an
b1+bn
=
2a
n+1
2
2b
n+1
2
=
a
n+1
2
b
n+1
2

a1+a2+…+an
b1+b2+…+bn
=
3n+1
4n+3

a
n+1
2
b
n+1
2
=
3n+1
4n+3

n+1
2
=t,则有n=2t-1,

a
n+1
2
b
n+1
2
=
at
bt
=
3(2t-1)+1
4(2t-1)+3
=
6t-2
8t-1

an
bn
=
6n-2
8n-1

故答案为:

6n-2
8n-1

单项选择题
单项选择题