问题
填空题
______. |
答案
∵a1+a2+…+an=
,b1+b2+…+bn=n(a1+an) 2
,n(b1+bn) 2
且两数列{an}和{bn}都为等差数列,
∴
=a1+a2+…+an b1+b2+…+bn
=n(a1+an) 2 n(b1+bn) 2
=a1+an b1+bn
=2a n+1 2 2b n+1 2
,a n+1 2 b n+1 2
又
=a1+a2+…+an b1+b2+…+bn
,3n+1 4n+3
∴
=a n+1 2 b n+1 2
,3n+1 4n+3
设
=t,则有n=2t-1,n+1 2
∴
=a n+1 2 b n+1 2
=at bt
=3(2t-1)+1 4(2t-1)+3
,6t-2 8t-1
则
=an bn
.6n-2 8n-1
故答案为:6n-2 8n-1