在正项数列{an}中,令Sn=
(Ⅰ)若{an}是首项为25,公差为2的等差数列,求S100; (Ⅱ)若Sn=
(Ⅲ)给定正整数k,正实数M,对于满足a12+ak+12≤M的所有等差数列{an},求T=ak+1+ak+2+…a2k+1的最大值. |
(Ⅰ)由题意,利用等差数列的公差为2,得到
=1
+ai ai+1
,
-ai+1 ai 2
所以S100=
=
-a101 a1 2
=5.
-25+2×100 25 2
(Ⅱ)证:令n=1得到
=p
+a1 a2
,则p=1.1
+a1 a2
由于Sn=n ∑i=1
=Sn=1
+ai ai+1
(1),nP
+a1 an+1
Sn+1=n+1 ∑i=1
=1
+ai ai+1
(2),(n+1)P
+a1 an+2
(2)-(1),将p=1代入整理得
-(n+1)
+a1 an+2
=n
+a1 an+1
,1
+an+1 an+2
化简得(n+1)an+1-nan+2=a1(3)
(n+2)an+2-(n+1)an+3=a1(4),
(4)-(3)得an+1+an+3=2an+2对任意的n≥1都成立.
在(3)中令n=1得到,a1+a3=2a2,从而{an}为等差数列.
(Ⅲ)记t=ak+1,公差为d,
则T=ak+1+ak+2+…a2k+1=(k+1)t+
d,则k(k+1) 2
=t+T k+1
,M≥a12+ak+12=t2+(t-kd)2=kd 2
(t+4 10
)2+kd 2
(4t-3kd)2≥1 10
(t+4 10
)2=kd 2
(2 5
)2T k+1
则T≤
,(k+1) 10M 2
当且仅当
,即4t=3kd M=
(t+2 5
)2kd 2
时等号成立.ak+1=t=3 M 10 d= 4 k M 10