设函数f(x)=x2+1,g(x)=x,数列{an}满足条件:对于n∈N*,an>0,且a1=1并有关系式:f(an+1)-f(an)=g(an+1),又设数列{bn}满足bn=
(1)求证数列{an+1}为等比数列,并求数列{an}的通项公式; (2)试问数列{
(3)若a=2,记cn=
|
(1)证明:因为f(x)=x2+1,g(x)=x,所以f(an+1)-f(an)=2an+1,
g(an+1)=an+1,由f(an+1)-f(an)=g(an+1),得an+1=2an+1,
即得an+1+1=2(an+1),且a1+1=2,
故数列{an+1}是以2为首项,2为公比的等比数列,得an+1+1=2×2n-1=2n,…(4分)
因此数列{an}的通项为:an=2n-1,…(3分)
(2)数列{
}是等差数列,且公差为loga2,证明如下:1 bn
由bn=
,得log aan+1
=1 bn
,所以log (an+1)a
=1 bn+1
,log (an+1+1)a
故
-1 bn+1
=1 bn
=log (
)aan+1+1 an+1
(常数),log 2a
所以数列数列{
}是以1 bn
=1 b1
为首项,log 2a
为公差的等差数列…(6分)log 2a
(3)由a=2及(1)与(2)可知cn=
,n∈N*,n 2n
=n,1 bn
所以Rn=
,n(n+1) 2
Tn=
+1 2
+2 22
+…+3 23 n 2n
故有
Tn=1 2
+1 22
+2 23
+…+3 24
+n-1 2n n 2n+1
两式相减,
Tn=1 2
+1 2
+1 22
+1 23
+…+1 24
-1 2n
=n 2n+1
-
(1-1 2
)1 2n 1- 1 2
=1-n 2n+1
-1 2n
,n 2n+1
即Tn=2-
-1 2n-1
=2-n 2n
,n∈N*…(10分)n+2 2n
所以不等式不等式λnTn+
<2(λn+2Rn an+1
),即为λn(2-3 an+1
)n+2 2n
<2(λn+n(n+1) 2n
)3 2n
即(1-λ)n2+(1-λ)n-6<0恒成立.也即:λ>
,n∈N*恒成立…(12分)n2+n-6 n2+2n
令f(n)=
,.n2+n-6 n2+2n
则f(n)=
=1-n2+n-6 n2+2n
=1-n+6 n2+2n
=1-1 n2+2n n+6
,1 (n+6)+
-1024 n+6
由n+6≥7,得(n+6)+
-10单调递增且大于0,∴f(n)单调递增,当n→+∞时,f(n)→1,且f(n)<1,故λ≥1,∴实数λ的取值范围是[1,+∞)…(14分)24 n+6