数列{an}满足a1=a,an+1=
(Ⅰ)若an+1=an,求a的值; (Ⅱ)当a=
(Ⅲ)设数列{an-1}的前n项之积为Tn.若对任意正整数n,总有(an+1)Tn≤6成立,求a的取值范围. |
(Ⅰ)因为an+1=an,所以an=
,解得an=an+3 2
或an=-1(舍去).3 2
由n的任意性知,a1=a=
.(3分)3 2
(Ⅱ)反证法:
假设an≥
,则3 2
≥3+an-1 2
,得an-1≥3 2
,3 2
依此类推,an-2≥
,,a2≥3 2
,a1≥3 2
,与a1=3 2
矛盾.1 2
所以an<
.(8分)3 2
(Ⅲ)由已知,当n≥2时,2an2=an-1+3,2(an2-1)=an-1+1,2(an-1)(an+1)=an-1+1,
所以2(an-1)=
.an-1+1 an+1
同理2(an-1-1)=
,2(a3-1)=an-2+1 an-1+1
,2(a2-1)=a2+1 a3+1
.a1+1 a2+1
将上述n-1个式子相乘,得2n-1(a2-1)(a3-1)(an-1-1)(an-1)=
,a1+1 an+1
即2n-1×
=Tn a1-1
,(an+1)Tn=a1+1 an+1
.
-1a 21 2n-1
所以
≤6对任意n≥2恒成立.a12-1 2n-1
又n=1时,(a1+1)(a1-1)=a12-1≤6,
故a12≤6×2n-1+1对任意n∈N*恒成立.
因为数列{6×2n-1+1}单调递增,所以a12≤6×1+1=7,
即a的取值范围是[-
,7
].(14分)7