对于数列{an},定义{△an}为数列{an}的一等差数列,其中△an=an+1-an(n∈N*), (1)若数列{an}通项公式an=
(2)若数列{an}的首项是1,且满足△an-an=2n,①证明:数列{
|
解(1)依题△an=an+1-an,
∴△an=[
(n+1)2-5 2
(n+1)]-(13 2
n2-5 2
n)=5n-4,13 2
(2)i)由△an-an=2n,即an+1-an-an=2n,即an+1=2an+2n,
∴
=an+1 2n+1
+an 2n
,1 2
∴
-an+1 2n+1
=an 2n
.a1=1,1 2
=a1 2
,1 2
所以数列{
}是以an 2n
为首项,1 2
为公差的等差数列.1 2
ii)由i)得
=an 2n
+1 2
(n-1)=1 2
,n 2
∴an=
•2n=n•2n-1,n 2
∴Sn=a1+a2+a3+an=1•20+2•21++n•2n-1,①
∴2Sn=1•21+2•22++n•2n②
①-②得-Sn=1+2+22++2n-1-n•2n=
-n•2n,1-2n 1-2
∴Sn=n•2n-2n+1=(n-1)•2n+1.