问题
填空题
若对于x∈(0,
|
答案
+1 sin2x
=(p cos2x
+1 sin2x
)(sin2x+cos2x)p cos2x
=1+p+
+psin2x cos2x
≥1+p+2cos2x sin2x
=(p
+1)2p
所以由不等式
+1 sin2x
≥9恒成立,得(p cos2x
+1)2≥9∴p≥4p
故答案为:p≥4.
若对于x∈(0,
|
+1 sin2x
=(p cos2x
+1 sin2x
)(sin2x+cos2x)p cos2x
=1+p+
+psin2x cos2x
≥1+p+2cos2x sin2x
=(p
+1)2p
所以由不等式
+1 sin2x
≥9恒成立,得(p cos2x
+1)2≥9∴p≥4p
故答案为:p≥4.