问题 选择题

设{an}是正项等差数列,{bn}是正项等比数列,且a1=b1,a2n+1=b2n+1则(  )

A.an+1=bn+1

B.an+1≥bn+1

C.an+1≤bn+1

D.an+1<bn+1

答案

∵{an}是正项等差数列,{bn}是正项等比数列,且a1=b1,a2n+1=b2n+1

∴an+1 =

a1+a2n+1
2
,b2n+1 =
b1•b2n+1
=
a1•a2n+1

∵由基本不等式可得  

a1+a2n+1
2
a1•a2n+1
,当且仅当 a1=a2n+1时,等号成立.

故有an+1≥bn+1

故选B.

选择题
单项选择题