问题
选择题
设{an}是正项等差数列,{bn}是正项等比数列,且a1=b1,a2n+1=b2n+1则( )
A.an+1=bn+1
B.an+1≥bn+1
C.an+1≤bn+1
D.an+1<bn+1
答案
∵{an}是正项等差数列,{bn}是正项等比数列,且a1=b1,a2n+1=b2n+1 .
∴an+1 =
,b2n+1 =a1+a2n+1 2
=b1•b2n+1
.a1•a2n+1
∵由基本不等式可得
≥a1+a2n+1 2
,当且仅当 a1=a2n+1时,等号成立.a1•a2n+1
故有an+1≥bn+1,
故选B.