问题 选择题

定义在R上的函数f(x)既是奇函数,又是周期函数,T是它的一个正周期.若将方程f(x)=0在闭区间[-T,T]上的根的个数记为n,则n可能为(  )

A.0

B.1

C.3

D.5

答案

因为函数是奇函数,所以在在闭区间[-T,T],一定有f(0)=0,

∵T是f(x)的一个正周期,所以f(0+T)=f(0)=0,即f(T)=0,所以f(-T)=-f(T)=0,

∴-T、0、T是f(x)=0的根,若在(0,T)上没有根,则恒有f(x)>0或f(x)<0;

不妨设f(x)>0,则x∈(-T,0)时,f(x)<0,但又有f(x)=f(x+T)>0,矛盾.

∴f(x)=0在(0,T)上至少还有一个根.

同理,在(-T,0)上也至少还有一个根,

∴至少有5个根.

故选D

单项选择题
单项选择题